
Pinpointing in the Description Logic EL+

Lorenz Leutgeb

International Center for Computational Logic, TU Dresden
lorenz.leutgeb@mailbox.tu-dresden.de

Abstract. Description Logic (DL) is an area of active research in the
field knowledge representation and artificial intelligence. It is concerned
with representing concepts in formal logics whose expressiveness lies be-
tween propositional logic and first order logic, and (computationally)
reasoning about them. A key reasoning problem in general, and thus also
for DLs, is the question of whether one concept is subsumed by another.
Additionally, given such a subsumption relationship between concepts A
and B, we call the problem of finding the set(s) of axioms that allow
to conclude A subsumes B, axiom pinpointing. We are concerned with
the description logic EL+ in particular, for which subsumption can be
solved in polynomial time. An algorithm for axiom pinpointing, based
on a subsumption algorithm, is discussed in detail. We briefly summarize
complexity results and mention weaker variants that still behave well in
practice.

1 Introduction

Description Logic (DL) is a successful subfield of research in Knowledge Rep- DL (field)
resentation and Reasoning (KRR). At its core lies a family of logic languages,
called Description Logics (DLs). Most of these logics lie in decidable fragments DLs (logics)
of classical first order logic, meaning that their syntax corresponds to a set of
formulae for which first order logic is decidable, e.g. the guarded fragment or
the two-variable fragment. Analysis of relations between the expressiveness of a
logic and tractability of associated reasoning problems is a big effort within DL.

From an application standpoint, DLs are used to structure conceptual knowl- Applications
edge in problem domains like natural language processing, databases and ontolo-
gies. The Web Ontology Language (OWL), fundamental to the semantic web,
is formally supported by Description Logic. Also, large biomedical knowledge
bases like Snomed CT and Galen are expressed in DLs.

A common reasoning problem is concept subsumption.1 Intuitively, this is Motivation
the same as asking whether all objects that belong to concept C also belong
to concept D, under the axioms of a given knowledge base, i.e. whether D sub-
sumes C wrt. the axioms. With the advent of large knowledge bases (hundreds
of thousands of axioms), new challenges arise: Assume that under the axioms of
1 Other reasoning problems include satisfiability and equivalence of concepts, as well
as consistency of knowledge bases. Concept subsumption is the most relevant for
this work.



a large knowledge base, D subsumes C, but it turns out that this consequence
is not consistent with observations in the real world (e.g. an object that is a D,
but not a C was newly discovered). Now, the knowledge base should be adjusted
to better model reality. But which of the thousands of axioms give rise to the
faulty conclusion? We call this problem axiom pinpointing.

Naturally, we are interested in computing minimal axiom sets (MinA)
that explain why D subsumes C.

In this work we summarize results on axiom pinpointing for the descriptionContents
logic EL+. First, in Section 2, we revisit syntax and semantics of the logics under
consideration. Section 3 is meant to showcase different approaches to axiom pin-
pointing. We follow the distinction made in [9, Section 1]: A glass-box algorithm
based on a polynomial-time algorithm for subsumption in EL+ is discussed in
3.1, while in 3.2 we address two black-box algorithms. We defer all complexity
results to Section 4 where we address the complexity of finding a single (min-
imal) set of axioms (Section 4.2) separately from the complexity of finding all
(minimal) sets of axioms (Section 4.1). Modifications that improve run time for
computing one MinAs towards application in practice are mentioned in Section
5. We conclude in Section 6.

Note that our investigation starts with the work by Baader, Peñaloza and
Suntisrivaraporn [2,3]. We take into account subsequent results achieved by
Peñaloza and Sertkaya [8,9].

2 Preliminaries

In this section we introduce syntax and semantics of EL+ as well as the core
reasoning problem of concept subsumption.

Description Logic considers syntax called concept descriptions, inductivelySyntax
defined via constructors from a set of concept names and a set of role names.
The constructors of the respective languages relevant to this work are listed in
the upper section of the column titled Syntax in Table 1.

Semantics are defined in terms of an interpretation I which talks about a non-Semantics
empty set of individuals denoted ∆I by means of an interpretation function ·I as
follows: ·I maps each concept name A ∈ NC to a set of individuals AI ⊆ ∆I , and
each role name r ∈ NR to a binary relation rI ⊆ ∆I ×∆I . Concept descriptions
are interpreted by extending ·I as defined in the upper section of the column
titled Semantics in Table 1.

In our setting, knowledge bases take the form of finite sets of axioms. We
call such a set TBox , denoted by T . Axioms are relations between conceptTBox
descriptions, and their form is shown in the lower section of Table 1. We say
that an axiom is satisfied under I if the corresponding condition (column titled
Semantics) holds. Further, we say that an interpretation I satisfies T if all
axioms in T are satisfied by I.

Since all EL+ TBoxes are consistent by definition (there are no constructors
that may cause logical inconsistencies [2,3, Sec. 2], in particular there is no form
of negation available), satisfiability of concepts and the consistency of TBoxes



Table 1. Overview of syntax and semantics of selected logics. Here, A,B ∈ NC are
concept names, C,D are concept descriptions (inductively), r1, . . . , rn, s ∈ NR are role
names. We denote an interpretation by I = (∆I , ·I). GCI stands for General Concept
Inclusion.

Name Syntax Semantics AL EL EL+ HL
Top > ∆I X X X X
Bottom ⊥ ∅ X
Atomic Negation ¬A ∆I \AI X
Conjunction C uD CI ∩DI X X X X

Value Restriction ∀r.C
{x ∈ ∆I | ∀y ∈ ∆I :

(x, y) ∈ rI → y ∈ CI} X

Existential Restr. ∃r.C
{x ∈ ∆I | ∃y ∈ ∆I :

(x, y) ∈ rI ∧ y ∈ CI} X X

GCI C v D CI ⊆ DI X X X X
Concept Definition C ≡ D CI = DI X X X X
Role Inclusion r1 ◦ · · · ◦ rn v s rI1 ◦ · · · ◦ rIn ⊆ sI X

are trivial. Instead, we are generally interested in deciding the reasoning problem
of concept subsumption.

Definition 1 (Concept Subsumption, cf. [2, Def. 1]). Given two EL+ con- C vT D
cept descriptions C,D and an EL+ TBox T , C is subsumed by D wrt. T (written
C vT D) if for every interpretation I that satisfies T we have that CI ⊆ DI .

With this, we proceed to define minimal axiom sets which are crucial to this
work.

Definition 2 (MinA, cf. [2, Def. 2 without partitioning T ]). Let T be MinA
an EL+ TBox and A,B concept names occurring in it such that A vT B. Then
a minimal axiom set (MinA) for T wr.t. A v B is a subset S ⊆ T such that
A vS B but A 6vS′ B for all strict subsets S ′ ⊂ S.

Example 1 (Humans and Animals (cf. [2,3, Sec. 3])). Consider the following
TBox T containing axioms that model knowledge about species:

Human v ∃parent.Human Humans have a human parent. (a1)
Human v Monkey Humans are monkeys. (a2)

∃parent.Monkey v Animal Monkey parent? It’s an animal. (a3)
Monkey v Animal Monkeys are animals. (a4)

Fish v Animal Fish are animals. (a5)

Observe that Human vT Animal holds. Now assume evidence has been found
that not all humans are animals, thus we should adjust our TBox such that
this relationship will not hold anymore. What are the axioms that give rise



to the subsumption? We can see that two minimal sets of axioms explain it:
S1 = {a2, a4} and S2 = {a1, a2, a3}. Even though |S1| < |S2| both are MinAs,
since we cannot find strict subsets that explain why all humans are animals.

Also note that the consequence holds when removing either a1 and a3 or a4
alone and that a2 is contained in both sets. The axiom a5 is not relevant in
our scenario, and we may imagine that there are thousands of other irrelevant
axioms in T .

We hypothesize that a4 is indeed a sensible axiom and a1, a3 are reasonable,
but a2 causes trouble since it states that humans are monkeys. If we remove a2,
then the resulting TBox will conform with our observation.

3 Algorithms

In this section we want to show how one MinA and multiple MinAs can be com-
puted. We distinguish between glass-box algorithms and black-box algorithms.
The former captures algorithms that may take advantage of the internals of the
reasoning algorithm by inspecting axioms and their structure, generally using
more involved data structures. On the contrary, the latter means algorithms
that are built on top of basic reasoning services, thus are more abstract but can
leverage already existing implementations of these reasoning services.

We will detail one glass-box approach and a black-box approach with some
variations.

3.1 Glass-Box Approach

The glass box algorithm we present is designed as an extension of a polynomial-
time algorithm for subsumption [5] in EL+ (cf. Def. 1). Therefore we first consider
the algorithm for subsumption (Algorithm 1), and only then extend it to compute
MinAs (Algorithm 2).

Following two simplifications based on normalization greatly reduce the num-Normalization
ber of cases that need to be covered in the algorithm [2, Sec. 2]: (1) It is suffi-
cient to address subsumption for concept names, given the following reduction:
C vT D iff A vT ∪{AvC,DvB} B where A,B are new concept names not occur-
ring in C,D, T (for a proof concerning EL cf. [1, Lemma 6.1,p. 142]). (2) It is
possible to translate a TBox T into a normalized TBox (meaning that all GCIs
are of the forms as presented in Table 2, cf. [1, Fig. 6.1, p. 143]) in time O(|T |)
(proven in [1, Lemma 6.2, p. 143]).

Note that lines 3 and 5 in Algorithm 1 refer to Table 2, and that the choice of
r (and therefore the rule to apply) in those lines is don’t care nondeterministic.

Now we extend Algorithm 1 to compute all MinAs in two steps: First, we
modify it so that a monotone Boolean pinpointing formula that corresponds to
the subsumption relation in question is generated via labeling of assertions. Sec-
ond, we obtain these MinAs by constructing models for the pinpointing formula,
such that the interpretation of propositional variables corresponds to a selec-
tion of axioms in the MinAs. Together this means that we can efficiently encode
MinAs by means of Boolean formulae.



Algorithm 1: Subsumption(T , A, B)
Input: An EL+ TBox T in normal form over NC and NR, and A,B ∈ NC.
Output: “yes” if A vT B holds, “no” otherwise.

1 A := {(A,A) | A ∈ NC} // Account for A vT A
2 ∪ {(A,>) | A ∈ NC} // Account for A vT >
3 while there is an i s.t. 1 ≤ r ≤ 5, ar ∈ T and Pr ⊆ A // see Table 2
4 do
5 A := A ∪ {qr} // Axiom ar explains qr
6 end
7 if (A,B) ∈ A then
8 return “yes”
9 end

10 return “no”

Table 2. Completion rules for subsumption in EL+, adapted from [2,3, Fig. 1], see also
[11, Fig. 5.2, p. 104]. Rule r is applicable if ar ∈ T and Pr ⊆ A. If rule r is applied,
then qr is added to A.

Rule Applicability Result
r ar (GCI) Pr (set of assertions) qr (assertion)
1 A1 u · · · uAn v B (X,A1), . . . , (X,An) (X,B)
2 A v ∃r.B (X,A) (X, r,B)
3 ∃r.A v B (X, r, Y ), (Y,A) (X,B)
4 r v s (X, r, Y ) (X, s, Y )
5 r ◦ r′ v s (X, r, Y ), (Y, r′, Z) (X, s, Z)



By means of a labeling function lab : T −→ R (where R is a set of propo-Labeling
sitional variables) every axiom a ∈ T is labeled with a unique propositional
variable lab(a) ∈ R, and we denote by lab(T ) ⊆ R the set of labels of all ax-
ioms in T . A monotone Boolean formula over lab(T ) is a Boolean formula using
(some of) the propositional variables lab(T ) and only the binary connectives
conjunction and disjunction, as well as the nullary connective true for truth.
A valuation is characterized by the set of propositional variables that it assignsValuation
to be true. For a valuation V ⊆ lab(T ) let TV = {a ∈ T | lab(a) ∈ V} be the
selection of axioms for which their corresponding label evaluates to true under
V.

Definition 3 (Pinpointing Formula [2, Def. 3]). Given an EL+ TBox TPinpointing Formula
and concept names A,B occuring in it, a monotone Boolean formula ψ over
lab(T ) is a pinpointing formula for T wrt. A v B if for every valuation V ⊆
lab(T ) it holds that A vTV B iff V satisfies ψ.

For the two MinAs in Example 1, S1 = {a2, a4} and S2 = {a1, a2, a3}, we
obtain φ = a2 ∧ (a4 ∨ (a1 ∧a3)) as a pinpointing formula. An obvious connection
can be pointed out by translating φ into disjunctive normal form (DNF) which
yields (a2 ∧ a4) ∨ (a1 ∧ a2 ∧ a3). Lastly, to establish a correspondence, we also
need to address ⊆-minimality of valuations.

Proposition 1 ([2, Prop. 1]). Let ψ be a pinpointing formula for T wrt. A v
B. Then {

TV | V is a ⊆-minimal valuation satisfying ψ
}

is the set of all MinAs for T wrt. A v B.

The initial assertions (added in lines 1 and 2) of the form (A,A) and (A,>)
where A ∈ NC are labeled with true in line 3.

Note that Algorithm 2 terminates in time exponential in |T |, and it allows
us to find all MinAs not only for a specific subsumption relation A vT B, but
we may query the returned set of assertions for (A,B) and consider lab((A,B))
for any subsumption relation of interest.

More formally (cf. [2,3, Thm. 2]), the resulting set of assertions A, after
termination of the loop in lines 4-15 satisfies the following properties: (1) A vT B
if and only if (A,B) ∈ A, and (2) lab((A,B)) is a pinpointing formula for T wrt.
A v B.

Example 2. Reconsider the TBox T from Example 1. We trace the execution of
the loop in AllMinAs(T ):

1. r = 1: Since we have a2 asserting that Human v Monkey and (Human,Human) ∈
A labeled true, the assertion (Human,Monkey) with label a2 ∧ true ≡ a2 is
added.

2. r = 2: We may add (Human, parent,Human) with label a1 ∧ true ≡ a1.
3. r = 1: Given a4 and (Human,Monkey) ∈ A (from iteration 1) we add

(Human,Monkey) to A with label a2 ∧ a4.



Algorithm 2: AllMinAs(T )
Input: An EL+ TBox T in normal form over NC.
Output: A set of assertions and a labeling function.

1 A := {(A,A) | A ∈ NC} // Account for A vT A.
2 ∪ {(A,>) | A ∈ NC} // Account for A vT >.
3 lab(a) := true for all a ∈ A // Initialize labels.
4 while there is an r s.t. 1 ≤ r ≤ 5, ar ∈ T and Pr ⊆ A // see Table 2
5 do
6 φ = lab(ar) ∧

∧
p∈Pr

lab(p)

7 if qr 6∈ A then
// ai is the only known explanation of ar.

8 A := A ∪ {qi}
9 lab(qr) := φ

10 else
// qr can already be explained, ar might be a new explanation!

11 ψ = lab(qr)
12 if ψ ∨ φ 6≡ ψ then

// Override, as qi might be explained by ψ or φ.
13 lab(qr) := ψ ∨ φ
14 end
15 end
16 end
17 return (A, lab)

4. r = 3: Finally, for a3 and (Human,Monkey), (Human, parent,Human) ∈ A,
the label for (Human,Animal) is overridden to (a2 ∧ a4) ∨ (a1 ∧ a2 ∧ a3).

Since no more assertions can be added after four iterations, the algorithm
terminates. The label for (Human,Animal), and therefore the computed pinpoint-
ing formula corresponding to Human v Animal, is (a2 ∧ a4) ∨ (a1 ∧ a2 ∧ a3) as
expected.

Lastly , we need to address normalization assumptions: In case the input Denormalization
TBox T was obtained from another TBox T̂ by normalization, the resulting
pinpointing formula may be translated to correspond to T̂ . To do this, we as-
sume a unique labeling of axioms in T̂ and note that any axiom in T has some
corresponding sources in T̂ , since T is generated by splitting axioms from T̂
until they all are in normal form. Now to translate a pinpointing formula φ for
T into a pinpointing formula for T̂ , replace each axiom label in φ with a dis-
junction of all the labels of the source axioms of the corresponding axiom (see
[2,3, Sec. 3, Sec. 5] and for a formal argument [11, Sec. 5.2, p. 107]).

3.2 Black-Box Approaches

In this section we want to present a naïve algorithm and a slightly more in-
volved variant, to compute one minimal set of axioms for a given subsumption



consequence, in a black-box manner: Both Algorithm 3 and 4, discussed below,
only rely on deciding subsumption and counting/choosing elements of the in-
put TBox. In contrast to Algorithm 1 and its extension Algorithm 2 from the
previous section, the structure of individual axioms is not considered. Conse-
quently, their high-level approach is exposed in a more direct fashion as we omit
statements that deal with peculiarities, such as the structure of an axiom.

Algorithm 3 linearily scans a working copy of the given knowledge base: For
every axiom, it is tested whether the subsumption relation under question still
holds without it. If this is the case, then it is removed from the working copy.
Clearly, O(|T |) subsumption tests must be performed. The result is a minimal
set of axioms.

Algorithm 3: LinOneMinA(T , A, B)
(cf. [2, Alg. 1], [4, Alg. 1], [11, Alg. 7, p. 97])

Input: An EL+ TBox T = {a1, . . . , an} over NC and NR, and A,B ∈ NC.
Output: If A vT B holds, one MinA for T wrt. A v B, else ∅.

1 if A 6vT B then
2 return ∅
3 end
4 S := T // Initialize MinA to set of all axioms.
5 for 1 ≤ i ≤ n do
6 if A vS\{ai} B then
7 S := S \ {ai} // Remove irrelevant axiom.
8 end
9 end

10 return S

Algorithm 4 employs a divide-and-conquer approach reminiscent of binary
search. The minimal axiom set S is constructed recursively. For every recursive
call, the input TBox is split into two halves (lines 4 and 5) and in case any of
the two halves preserves A v B, search is continued in this part of the input.
Otherwise, S is constructed as the union of the result for both halves respectively.
With this approach, only O((|S|−1)+ |S| · log(|T |/|S|)) subsumption tests need
to be performed [11, p. 89].

4 Complexity

In this section we briefly address the computational complexity of computing all
MinAs and one MinA respectively.

4.1 All MinAs

Since there may be exponentially many MinAs for a given EL+ TBox, it is clear
that an exponential run-time in the worst-case cannot be avoided.



Algorithm 4: LogOneMinA(T , A, B, S)
(cf. [4, Alg. 2], [11, Alg. 8, p. 98])

Input: An EL+ TBox T = {a1, . . . , an} over NC and NR, and A,B ∈ NC

s.t. A vT B holds, as well as a “support set” (of axioms) for A vT B.
Output: minimal subset S ′ ⊆ T s.t. A vS∪S′ B holds.

1 if |T | = 1 then
2 return T
3 end
4 L := {ai ∈ T | 1 ≤ i ≤ bn/2c}
5 R := {ai ∈ T | bn/2c+ 1 ≤ i ≤ n}
6 if A vS∪L B then
7 return LogOneMinA(L, A, B, S)
8 end
9 if A vS∪R B then

10 return LogOneMinA(R, A, B, S)
11 end
12 S1 := LogOneMinA(L, A, B, S ∪R)
13 S2 := LogOneMinA(R, A, B, S ∪ S1)
14 return S1 ∪ S2

Example 3 ([2,3, Ex. 1]). Consider the language HL, which is a fragment of
EL+ (cf. Table 1). Given n ≥ 1, we construct a HL TBox of size linear in n,
that gives rise to 2n MinAs:

Tn :=
{
Bi−1 v Pi uQi, Pi v Bi, Qi v Bi | 1 ≥ i ≥ n

}
Note that there are 2n MinAs for Tn wrt. B0 v Bn, since for each i with 1 ≤ i ≤ n
either the axiom Pi v Bi or the axiom Qi v Bi might be in a MinA.

Further, it can be shown that computing any interesting property of the set
of all MinAs is not possible in polynomial time (unless P = NP).

Theorem 1 ([2,3, Thm. 3 without partitioning T ]). Given an HL TBox
T , concept names A,B occurring in T , and a natural number n, it is NP-
complete to decide whether or not there is a MinA S for T wrt. A v B such
that |S| ≤ n.

With this, [2,3] starts further investigation. In particular, since one might
regard the problem of computing all MinAs as an enumeration problem, this
raises the question whether there is an output polynomial algorithm for it. An
algorithm with this property would only take polynomial time in cases where the
number of MinAs is polynomial in the size of the input. However, after showing
that there is no output polynomial algorithm for computing all minimal satisfy-
ing valuations of monotone Boolean formulae (unless P = NP) [2,3, Thm. 4], a
negative result is presented:



Theorem 2 ([2,3, Thm. 5]). There is no output polynomial algorithm that
computes for a given HL TBox T = (Ts]Tr) and concept names A,B occurring
in T , all MinAs for T wrt. A v B, unless P = NP.

Note that the setting considered in [2,3] and in the above theorem the TBox T
is split into “static” part of T , denoted Ts and Tr, the “refutable” part respectively.
These parts are disjoint as ] stands for the disjoint union of two sets.

The question whether Theorem 2 also holds for the case where Ts = ∅, which
corresponds to the view in this work, is addressed in [8, Thm. 2]. There, the
problem of computing all MinAs is shown to be “at least as hard as recognizing
the set of all minimal transversals of a given hypergraph [6], which is a promi-
nent open problem in hypergraph theory” (quoting from [8], importance of the
problem surveyed in [7]).

A comprehensive analysis of the complexity of computing all MinAs in dif-
ferent variants can be found in [9], where similar logics are considered.

4.2 One MinA

Algorithm 3 shows how one MinA can be computed in polynomial time. Since
the loop in lines 5-8 is executed exactly n = |T | times, and the subsumption
test also runs in time O(P (|T |)), an overall time complexity polynomial in |T |
is achieved. The result is highlighted in [2,3, Thm. 6].

5 Implementations and Application in Practice

As stated in the previous section, computing one MinA takes time polynomial in
the number of axioms in the TBox, i.e. in the size of the knowledge base. While
this might sound promising for practical applications and implementation, exper-
imental reports show a different picture: In [11, Sec. 5.2, p. 97], Suntisrivaraporn
states that “The naïve minimization algorithm [Algorithm 3] did not terminate
on Snomed CT in 48 hours”.

To make use of pinpointing in practice, [2,3, Sec. 5] proposes a trade-off.
By relaxing the minimality property of computed axiom sets, significant gains
in runtime can be realized. To decrease the size of the input for a black-box
algorithm, a greedy algorithm based on Algorithm 2, where the branch in lines
10-14 is dropped, makes a pre-selection. Note that minimality breaks, since only
the first explanation that the algorithm considers will be reflected by the label.
The remaining set is minimized using Algorithm 3.

Example 4. To highlight how minimality is given up when using the modified,
greedy version of Algorithm 2, consider the following TBox T :

A v X (a1) X v Y (a2)

Y v X (a3) X v B (a4)

Z v X (a5)



Note that we might explain A v B wrt. T by two sets of axioms S1 = {a1, a4}
or S2 = {a1, a2, a3, a4}. However, since S2 ⊃ S1, we see that S2 is not a MinAs,
but S1 is.

Running Algorithm 2 normally would yield the pinpointing formula (a1∧a4)∨
(a1, a2, a3, a4), and by the minimality condition in Proposition ?? we arrive at
S1. However, with the greedy modification, it is possible that we obtain either
of two different pinpointing formulas, φ1 = a1 ∧ a4 and φ2 = a1 ∧ a2 ∧ a3 ∧ a4.
This is because of the fact that rule application is don’t care nondeterministic.
So, in case the algorithm labels (A,B) by φ2, we arrive at the non-minimal set
of explanations S2. Through further minimization by means of Algorithm 3 the
final result S1 is obtained.

A denormalization translation, similar to the one described in Section 3.1
might be needed, which introduces disjunction to the pinpointing formula [2,3,
Sec. 5]. In order to keep polynomial runtime, a greedy strategy to find valuations
might be appropriate.

With this approach, run times for the Galen [10] ontology decreased from 7
hours to approximately 10 minutes with an increase in size of 2.59% [2,3, Sec. 5].

Further empirical results are given in [11, Sec. 6.2.5, p. 127].

6 Summary

We have presented a formalization of axiom pinpointing based on [2,3] and cov-
ered a glass-box as well as two black-box algorithms to compute MinAs. While
implementations for computing one MinAs are practicable, the complexity of
enumerating all MinAs is not fully resolved.
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