
Towards verified compilation
of CakeML into WebAssembly

Lorenz Leutgeb
lorenz@leutgeb.xyz

2018-11-28

TU Wien (Austria) and Data61, CSIRO (Australia)

How this project came about…

• Previously: Bachelor’s in Software Engineering at TU Wien
• Currently: European Master’s Program in Computational Logic

• TU Dresden, Germany, EU
• Free University of Bolzano, Italy, EU
• TU Wien, Austria, EU

• My project work is sponsored in part by EMCL and by Data61, and
I am supervised by Michael Norrish.

2/36

Agenda

Prelude

Software Verification

Introduction

WebAssembly

CakeML

Translating CakeML to WebAssembly

Verification

Progress and Outlook

3/36

Prelude

Motivation

Software systems have “bugs”
that lead to injury and death!

• Generally, when bugs mean human casualties or significant
financial loss.

• Critical infrastructure from power plants to TLS implementations
(Microsoft Research, F∗).

• Airplanes, weapon systems.
• And yes, sometimes even operating systems (Data 61, seL4
Linux).

4/36

The question that programmers repeatedly ask themselves …

Does my code do what it should?

• Is it free of security vulnerabilities (that I can describe)?
• Is it deadlock-free, e.g. will it remain responsive to some degree
in any scenario?

• Does it implement what was specified?
• Will all components that want to access a resource eventually
access it?

5/36

Formal Verification vs. Testing

Unit testing? Each unit test covers one trace through the
implementation. However, there are infinitely many
possible traves. Therefore, unit testing is gravely
limited.

Other testing approaches? Might cover complex scenarios, but can
always only check for specific cases. Same problem.

You get formal proof, not a just green box in your test report! Makes
possible new tools and answering new questions.

6/36

Business?

Mostly static analysis tools. Not many synthesis tools have been
published.

• DiffBlue Ltd. (17M GPB investment by Goldman Sachs and Oxford
Sciences Innovation in 2017)

• Infer (static analyzer by Facebook, Inc.)
• Galois, Inc. (bootstrapped, founded dotcom times)
• Automated Reasoning Group at Amazon, Software Analysis Team
at Google, Microsoft Research teams

• Chip manufacturers (ARM, Intel, Apple, Google, …)
• Verified compilers are slowly moving from research to product
stages.

7/36

Introduction

Process
typically one of:

Embedder
typically the JS runtime of a browser

Module

Module

Import/Export

Host Function
M

em
ory

Filesystem?

Web APIs (Fetch, WebGL)

Function Table

Functions

Types

Service Worker

Web UI

Garbage Collection

Document Model of a
Website

What is WebAssembly?…

• A portable code format and instruction set architecture
• Sandboxed, embedded by design
• Open Standard, steered by a World Wide Web Consortium
working group

• Actually supported by all major browser vendors
• Supersedes PNaCl (portable native client, Google), asm.js
(simple subset of JS, Mozilla)

• Within 10% of native code performance in the browser
• Opens up browsers for other languages than JS

11/36

Design Goals

Semantics Representation
Language independent Compact
Platform independent Easy to generate
Hardware independent Fast to decode
Fast to execute Fast to validate
Safe to execute Fast to compile
Deterministic Streamable
Easy to reason about Parallelisable

Taken from presentation “Neither Web nor Assembly” by Andreas
Rossberg (spec author).

12/36

Concrete Syntax by Example

S-Expression:
(module
(func $add
(param i32 i32)
(result i32)
(i32.add ;; 3
(get_local 0) ;; 1
(get_local 1) ;; 2

)
)
(export ”add” (func $add))

)

00 6100 6d73 0001 0000 0701 6001 7f02 017f
10 037f 0102 0700 010a 6106 6464 7754 006f
20 0a00 0109 0007 0020 0120 0b6a 1900 6e04
30 6d61 0165 0109 0600 6461 5464 6f77 0702
40 0001 0002 0100 0000

Preferred by browsers, for bandwidth!

13/36

Concrete Syntax by Example

S-Expression:
(module
(func $add
(param i32 i32)
(result i32)
(i32.add ;; 3
(get_local 0) ;; 1
(get_local 1) ;; 2

)
)
(export ”add” (func $add))

)

00 6100 6d73 0001 0000 0701 6001 7f02 017f
10 037f 0102 0700 010a 6106 6464 7754 006f
20 0a00 0109 0007 0020 0120 0b6a 1900 6e04
30 6d61 0165 0109 0600 6461 5464 6f77 0702
40 0001 0002 0100 0000

Preferred by browsers, for bandwidth!

Postfix notation:
(module
(func $fac

(param f64) (result f64)
(get_local 0)
(f64.const 1)
f64.lt
if (result f64)
f64.const 1

else
get_local 0
get_local 0
f64.const 1
f64.sub
call $fac
f64.mul

end
)

)
13/36

Abstract Syntax

• Instructions
Numeric Constants, unary and binary operations, binary

relations, conversions.
Variables get_local, set_local, get_global,

set_global
Memory load, store, size, grow

Control Flow if, loop, block, call. All of them have some
notion of a return type.

… and a few others.
• Declarations for tables, memories, exports, imports, …

14/36

Semantics

• Statically as a type system (“embarassingly simple”)
• Dynamically as a nondeterministic, relational small-step
reduction, and types extending the static setting.

• Combining these two, soundness provides:
• Type Safety (locals, globals, instruction/function args)
• Memory Safety (locals, globals, tables, memory)
• No undefined behaviour (evaluation rules cover all cases and are
mutually consistent)

• Encapsulation (scope of locals, module components according to
imports/exports)

15/36

18/36

19/36

Soundness: Key Theorems

Preservation If ⊢ (S, T) : t and (S, T) ↪→ (S′, T′) then
⊢ (S′, T′) : t and ⊢ S ⪯ S′.

Progress If ⊢ (S, T) : t then
either (S, T) is terminal or there is (S′, T′)
s.t. (S, T) ↪→ (S′, T′).

Soundness If ⊢ (S, T) : t then
(S, T) either diverges or takes a finite number of
↪→-steps to reach a terminal configuration (S′, T′)
s.t. ⊢ (S′, T′) : t.

Proofs mechanized in Isabelle/HOL in [?] based on the definitions on
paper in [?].

20/36

Maturity and Adoption i

• Specification officially (still) a draft, however widely
implemented and used.

• Released a minimum viable product early on.
• Formal specification, reference interpreter (OCaml) maintained
by spec authors.

• Many embedders in/compilers from various languages available
(just search GitHub).

• Early Adopters: Gamers! Run all the flash minigames with
WebAssembly.

• But now, it is possible to compile game engines from C/C++ to
the web!

• “Native performance on the web.”
• Leveraging legacy codebases, i.e. PSPDFKit’s PDF handling library.
• Standalone VM using LLVM IR and JIT

21/36

Future

• Multiple memories, 64bit addressable memory, multiple return
values

• Garbage collection (reference types, call_ref,
{struct|array|i31ref}.new, more typing)

• Concurrency through threads (atomic operations, mutexes)
• Exception handling (try/catch)
• Tail Calls
• SIMD

22/36

A verified Implementation of ML i

• …as a compiler in Higher Order Logic.
• First verified compiler of a functional programming language
(POPL’14).

• Developed by team of 16+25 with many publications, please see
website!

25/36

A verified Implementation of ML ii

• CakeML is a substantial subset of Standard ML.
• Two frontends:

1. Translate from HOL to CakeML abstract syntax
2. Parse CakeML concrete syntax

• Optimizing backend which targets x86, ARM, RISC-V, MIPS.
Working on targeting WebAssembly.

• Can bootstrap inside HOL, i.e. compile itself via frontend 1.
• Allows calls to a foreign function interface

26/36

Compiler Architecture

28/36

Translating CakeML to
WebAssembly

Which intermediate language to compile from?

Looking for a language that
matches WebAssembly’s features:

1. Operates on words
2. ■ Manages memory
3. ■ Local control flow
4. ■ No register usage
conventions

5. ■ Implicit stack?

29/36

Which intermediate language to compile from?

Looking for a language that
matches WebAssembly’s features:
1. Operates on words

2. ■ Manages memory
3. ■ Local control flow
4. ■ No register usage
conventions

5. ■ Implicit stack?

29/36

Which intermediate language to compile from?

Looking for a language that
matches WebAssembly’s features:
1. Operates on words

2. ■ Manages memory
3. ■ Local control flow
4. ■ No register usage
conventions

5. ■ Implicit stack?

29/36

Which intermediate language to compile from?

Looking for a language that
matches WebAssembly’s features:
1. Operates on words
2. ■ Manages memory

3. ■ Local control flow
4. ■ No register usage
conventions

5. ■ Implicit stack?

29/36

Which intermediate language to compile from?

Looking for a language that
matches WebAssembly’s features:
1. Operates on words
2. ■ Manages memory
3. ■ Local control flow

4. ■ No register usage
conventions

5. ■ Implicit stack?

29/36

Which intermediate language to compile from?

Looking for a language that
matches WebAssembly’s features:
1. Operates on words
2. ■ Manages memory
3. ■ Local control flow
4. ■ No register usage
conventions

5. ■ Implicit stack?

29/36

Which intermediate language to compile from?

Looking for a language that
matches WebAssembly’s features:
1. Operates on words
2. ■ Manages memory
3. ■ Local control flow
4. ■ No register usage
conventions

5. ■ Implicit stack?

29/36

Challenges ≈ mismatch(StackLang, WebAssembly)

What I need to “compile away”:

• No exception handling.
• No tail recursive calls in WebAssembly!

1. Cannot use call/return without risk of stack overflows.
2. Hence, emulate jumps in WebAsssembly!
3. Jumps emulated by br_table which with local control flow.
4. Cannot use if, loop, block, br.

Also: Provide a functional big-step semantics.

30/36

Implementation

stack_to_wasm

wasmLang
(abstract syntax)

stackSem

wasmSem
(deterministic, funct. small- and big-step)

wasmRelSem
(nondeterministic, relational)

wasmSemanticPrimitives
(aux for *Sem)

dep

depdep

equivalence

stackLang
dep

dep

dep

p2

p1

Very close translation
of wasm spec

thm

th
m

wasmStaticSem
(type system, validation)

dep

Frontend

wasm_binary
(abstract syntax to bytes)

dep

stack_to_wasmProof

dep

dep

co
rr

ec
tn

es
s

Output

31/36

Verification

Compiler Correctness Theorem

p1 s1 p2 s2

r1 s′1 r2 s′2

eval1 eval2

sims

compile

simr

sims

(∀ . . .) eval1 p1 s1 = (r1, s′1) ∧ sims s1 s2 ∧ compile p1 = p2 ∧ r1 ̸= Error
−→

(∃ r2 s′2) eval2 p2 s2 = (r2, s′2) ∧ sims s′1 s′2 ∧ simr r1 r2

32/36

Progress and Outlook

Progress

• Mechanized static and dynamic semantics
• Mechanized most of the initialization semantics
• Specified an alternative dynamic semantics in functional
big-step style

• Prototyped translation
• Prepared the CakeML compiler architecture for integrating the
new target

• Proved some lemmas, mostly about the relation between the
two semantics

• Thought about and formulated some …conjectures …
• Prototyped a runtime to execute generated code in browser

33/36

TODO

• Prove that all compiler output is valid WebAssembly
• Prove compiler correctness

34/36

Recap

Prelude

Software Verification

Introduction

WebAssembly

CakeML

Translating CakeML to WebAssembly

Verification

Progress and Outlook

35/36

Questions, please!

Or mail to lorenz@leutgeb.xyz!

35/36

References i

A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman,
D. Gohman, L. Wagner, A. Zakai, and J. F. Bastien.
Bringing the web up to speed with webassembly.
In A. Cohen and M. T. Vechev, editors, Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017,
pages 185–200. ACM, 2017.

C. Watt.
Mechanising and verifying the webassembly specification.
In J. Andronick and A. P. Felty, editors, Proceedings of the 7th ACM
SIGPLAN International Conference on Certified Programs and
Proofs, CPP 2018, Los Angeles, CA, USA, January 8-9, 2018, pages
53–65. ACM, 2018.

36/36

	Prelude
	Software Verification

	Introduction
	WebAssembly

