
Abduction and Logic Programming

Lorenz Leutgeb

2017-06-19

L. Console, D. T. Dupré, and P. Torasso. On the relationship
between abduction and deduction.
J. Log. Comput., 1(5):661–690, 1991.
doi: 10.1093/logcom/1.5.661.
URL http://dx.doi.org/10.1093/logcom/1.5.661

T. Eiter, G. Gottlob, and N. Leone. Abduction from logic
programs: Semantics and complexity.
Theor. Comput. Sci., 189(1-2):129–177, 1997.
doi: 10.1016/S0304-3975(96)00179-X.
URL http://dx.doi.org/10.1016/S0304-3975(96)00179-X

http://dx.doi.org/10.1093/logcom/1.5.661
http://dx.doi.org/10.1016/S0304-3975(96)00179-X

Agenda

1. Deduction, Induction, Abduction [4]

2. Logic Programming & Logic Programs

3. Deduction via Abduction [2]

4. A Framework for Abduction Problems [3]

Deduction

Rule. All the beans from this bag are white.
Case. These beans are from this bag.

∴ Result. These beans are white.

Example: Mathematics heavily depend on deduction to derive
more explicit knowledge from basic axioms.

Induction

Case. These beans are from this bag.
Result. These beans are white.

∴ Rule. All the beans from this bag are white.

Example: Physicists employ experiments and their results to derive
the laws of physics, which can be regarded as induction.

Abduction

Rule. All the beans from this bag are white.
Result. These beans are white.

∴ Case. These beans are from this bag.

Example: A physician uses medical knowledge to explain the
symptoms of her patient, a diagnosis obtained by abduction.

Logic Programming

I A branch of declarative programming that remixes first order
logic.

I Basic idea: Not how but what.

I Sudoku solver in less than 20 LOCs.

I Stand on the shoulders of highly optimized solvers.

I User interaction essentially does not work (yet).

I Declarative Problem Solving (184.701, UE)

Logic Programs

Definition
A rule is an ordered pair of the form

a1 ∨ . . . ∨ am ← b1 ∧ . . . ∧ bk ∧ not bk+1 ∧ . . . ∧ not bn

where a1, . . . , am, b1, . . . , bn are literals, not is negation as failure
(or default negation), a1 ∨ . . . ∨ am is the head of r and
b1, . . . , bk , not bk+1, . . . , not bn is the body of r .

Abduction via Deduction (1/4)

Given a theory . . .

grass is wet ← rained last night

grass is wet ← sprinkler was on

grass is cold and shiny ← grass is wet

shoes are wet ← grass is wet

We observe that . . .

grass is cold and shiny

And ask ourselves: Why?

Abduction via Deduction (1/4)

Given a theory . . .

grass is wet ← rained last night

grass is wet ← sprinkler was on

grass is cold and shiny ← grass is wet

shoes are wet ← grass is wet

We observe that . . .

grass is cold and shiny

And ask ourselves: Why?

Abduction via Deduction (1/4)

Given a theory . . .

grass is wet ← rained last night

grass is wet ← sprinkler was on

grass is cold and shiny ← grass is wet

shoes are wet ← grass is wet

We observe that . . .

grass is cold and shiny

And ask ourselves: Why?

Abduction via Deduction (1/4)

Given a theory . . .

grass is wet ← rained last night

grass is wet ← sprinkler was on

grass is cold and shiny ← grass is wet

shoes are wet ← grass is wet

We observe that . . .

grass is cold and shiny

And ask ourselves: Why?

Abduction via Deduction (2/4)

Our theory after “completion” of non-abducibles [1]:

grass is wet ↔ rained last night ∨ sprinkler was on

grass is cold and shiny ↔ grass is wet

shoes are wet ↔ grass is wet

Definition ([2])

The emcompletion LPC is a set of equivalences
{pi ↔ Di |i = 1, . . . , n}, where p1, . . . pn are all the non-abdicuble
atoms in LP and Di ≡ Qi1 ∨ . . . ∨ Qim in case
{Qij → pi |j = 1, . . . ,m} is the set of clauses in LP having pi as
their head.

Abduction via Deduction (3/4)

Hypotheses:

rained last night

sprinkler was on

Abduction via Deduction (4/4)

Console et al. [2] show that this “object level” characterization of
abduction corresponds to the “meta level ” characterization.
They generalize the above approach for:

1. taxonomic or abstraction relationships between abducible
atoms, i.e. of the form

α→ β α(X)→ β(X)

2. constraints between abducible atoms in the form of
denials/nogoods, i.e. of the form

¬(α1 ∧ . . . ∧ αn) ¬(α1(t1) ∧ . . . ∧ αn(tn))

A Framework for Abduction Problems (1/3)

Definition ([3, Definition 1, p. 140])

Let V be a set of propositional atoms. A logic programming
abduction problem (LPAP) P over V consists of a tuple
〈H,M, LP, |=〉 where H ⊆ V is a finite set of hypotheses,
M ⊆ V ∪ {¬v |v ∈ V } is a finite set of manifestations, LP is a
propositional logic program on V and |= is an inference operator.

A Framework for Abduction Problems (2/3)

Interesting inference operators: |=wf , |=b
st , |=c

st

Definition ([3, p. 137])

Brave reasoning (or credulous reasoning) infers that a literal Q is
true in LP (denoted LP |=b

st Q) iff Q is true with respect to M for
some M ∈ STM(LP).

Definition ([3, p. 137])

Cautious reasoning (or skeptical reasoning) infers that a literal Q is
true in LP (denoted LP |=b

st Q) iff (1) Q is true with respect to M
for all M ∈ STM(LP) and (2) STM(LP) 6= ∅.

A Framework for Abduction Problems (3/3)

Interesting problems:

1. Solution verification (S ∈ Sol(P)),

2. consistency checking (Sol(P) 6= ∅),

3. and �-relevance, -necessity of some h ∈ H for LPAPs and
disjunctive LPAPs where preference � is either minimality with
respect to inclusion (⊆), cardinality (≤) or no preference (=)

. . . along all three inference operators |=wf , |=b
st , |=c

st .

Recap

1. Deduction, Induction, Abduction [4]

2. Logic Programming & Logic Programs

3. Deduction via Abduction [2]

4. A Framework for Abduction Problems [3]

[1] K. L. Clark. Negation as failure. In H. Gallaire and J. Minker,
editors, Logic and Data Bases, Symposium on Logic and Data
Bases, Centre d’études et de recherches de Toulouse, 1977.,
Advances in Data Base Theory, pages 293–322, New York,
1977. Plemum Press. ISBN 0-306-40060-X.

[2] L. Console, D. T. Dupré, and P. Torasso. On the relationship
between abduction and deduction. J. Log. Comput., 1(5):
661–690, 1991. doi: 10.1093/logcom/1.5.661. URL
http://dx.doi.org/10.1093/logcom/1.5.661.

[3] T. Eiter, G. Gottlob, and N. Leone. Abduction from logic
programs: Semantics and complexity. Theor. Comput. Sci.,
189(1-2):129–177, 1997. doi:
10.1016/S0304-3975(96)00179-X. URL
http://dx.doi.org/10.1016/S0304-3975(96)00179-X.

[4] C. S. Peirce. Illustrations of the Logic of Science VI:
Deduction, Induction, and Hypothesis. The Popular Science
Monthly, 13, 1878.

http://dx.doi.org/10.1093/logcom/1.5.661
http://dx.doi.org/10.1016/S0304-3975(96)00179-X

	Deduction, Induction, Abduction
	Logic Programming & Logic Programs

