Abduction and Logic Programming

Lorenz Leutgeb

2017-06-19

(ロ)、(型)、(E)、(E)、 E) の(の)

L. Console, D. T. Dupré, and P. Torasso. On the relationship between abduction and deduction. *J. Log. Comput.*, 1(5):661–690, 1991. doi: 10.1093/logcom/1.5.661. URL http://dx.doi.org/10.1093/logcom/1.5.661

T. Eiter, G. Gottlob, and N. Leone. Abduction from logic programs: Semantics and complexity. *Theor. Comput. Sci.*, 189(1-2):129–177, 1997. doi: 10.1016/S0304-3975(96)00179-X. URL http://dx.doi.org/10.1016/S0304-3975(96)00179-X

Agenda

- 1. Deduction, Induction, Abduction [4]
- 2. Logic Programming & Logic Programs
- 3. Deduction via Abduction [2]
- 4. A Framework for Abduction Problems [3]

Deduction

Rule. All the beans from this bag are white.

- Case. These beans are from this bag.
- ... *Result.* These beans are white.

Example: Mathematics heavily depend on deduction to derive more explicit knowledge from basic axioms.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Induction

- Case. These beans are from this bag.
- Result. These beans are white.
- ... Rule. All the beans from this bag are white.

Example: Physicists employ experiments and their results to derive the laws of physics, which can be regarded as induction.

Abduction

- Rule.All the beans from this bag are white.Result.These beans are white.
- \therefore Case. These beans are from this bag.

Example: A physician uses medical knowledge to explain the symptoms of her patient, a diagnosis obtained by abduction.

Logic Programming

 A branch of declarative programming that remixes first order logic.

- Basic idea: Not *how* but *what*.
- Sudoku solver in less than 20 LOCs.
- Stand on the shoulders of highly optimized solvers.
- User interaction essentially does not work (yet).
- Declarative Problem Solving (184.701, UE)

Logic Programs

Definition

A rule is an ordered pair of the form

$$a_1 \lor \ldots \lor a_m \leftarrow b_1 \land \ldots \land b_k \land \mathsf{not} \ b_{k+1} \land \ldots \land \mathsf{not} \ b_n$$

where $a_1, \ldots, a_m, b_1, \ldots, b_n$ are literals, not is *negation as failure* (or *default negation*), $a_1 \vee \ldots \vee a_m$ is the *head* of *r* and b_1, \ldots, b_k , not b_{k+1}, \ldots , not b_n is the *body* of *r*.

Given a theory ...

grass_is_wet ← rained_last_night grass_is_wet ← sprinkler_was_on grass_is_cold_and_shiny ← grass_is_wet shoes_are_wet ← grass_is_wet

Given a theory ...

grass_is_wet ← rained_last_night grass_is_wet ← sprinkler_was_on grass_is_cold_and_shiny ← grass_is_wet shoes_are_wet ← grass_is_wet

We observe that ...

grass_is_cold_and_shiny

Given a theory ...

grass_is_wet ← rained_last_night grass_is_wet ← sprinkler_was_on grass_is_cold_and_shiny ← grass_is_wet shoes_are_wet ← grass_is_wet

We observe that ...

grass_is_cold_and_shiny

And ask ourselves: Why?

Given a theory ...

grass_is_wet ← rained_last_night grass_is_wet ← sprinkler_was_on grass_is_cold_and_shiny ← grass_is_wet shoes_are_wet ← grass_is_wet

We observe that ...

grass_is_cold_and_shiny

And ask ourselves: Why?

Our theory after "completion" of non-abducibles [1]:

grass_is_wet	\leftrightarrow	$rained_last_night \lor sprinkler_was_on$
grass_is_cold_and_shiny	\leftrightarrow	grass_is_wet
shoes_are_wet	\leftrightarrow	grass_is_wet

Definition ([2])

The emcompletion LP_C is a set of equivalences $\{p_i \leftrightarrow D_i | i = 1, ..., n\}$, where $p_1, ..., p_n$ are all the non-abdicuble atoms in LP and $D_i \equiv Q_{i1} \lor ... \lor Q_{im}$ in case $\{Q_{ij} \rightarrow p_i | j = 1, ..., m\}$ is the set of clauses in LP having p_i as their head.

Hypotheses:

rained_last_night sprinkler_was_on

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Console et al. [2] show that this "object level" characterization of abduction corresponds to the "meta level " characterization. They generalize the above approach for:

1. *taxonomic* or *abstraction relationships* between abducible atoms, i.e. of the form

$$\alpha \rightarrow \beta \qquad \alpha(X) \rightarrow \beta(X)$$

2. *constraints* between abducible atoms in the form of denials/nogoods, i.e. of the form

$$\neg(\alpha_1 \wedge \ldots \wedge \alpha_n) \qquad \neg(\alpha_1(t_1) \wedge \ldots \wedge \alpha_n(t_n))$$

Definition ([3, Definition 1, p. 140])

Let V be a set of propositional atoms. A logic programming abduction problem (LPAP) \mathscr{P} over V consists of a tuple $\langle H, M, LP, \models \rangle$ where $H \subseteq V$ is a finite set of hypotheses, $M \subseteq V \cup \{\neg v | v \in V\}$ is a finite set of manifestations, LP is a propositional logic program on V and \models is an inference operator.

A Framework for Abduction Problems (2/3)

Interesting inference operators: \models_{wf} , \models_{st}^{b} , \models_{st}^{c} ,

Definition ([3, p. 137])

Brave reasoning (or credulous reasoning) infers that a literal Q is true in LP (denoted $LP \models_{st}^{b} Q$) iff Q is true with respect to M for some $M \in STM(LP)$.

Definition ([3, p. 137])

Cautious reasoning (or skeptical reasoning) infers that a literal Q is true in LP (denoted $LP \models_{st}^{b} Q$) iff (1) Q is true with respect to M for all $M \in STM(LP)$ and (2) $STM(LP) \neq \emptyset$.

A Framework for Abduction Problems (3/3)

Interesting problems:

- 1. Solution verification ($S \in Sol(\mathscr{P})$),
- 2. consistency checking $(Sol(\mathscr{P}) \neq \emptyset)$,
- and *≤*-relevance, -necessity of some *h* ∈ *H* for LPAPs and disjunctive LPAPs where preference *≤* is either minimality with respect to inclusion (*⊆*), cardinality (*≤*) or no preference (=)

... along all three inference operators \models_{wf} , \models_{st}^{b} , \models_{st}^{c} .

Recap

- 1. Deduction, Induction, Abduction [4]
- 2. Logic Programming & Logic Programs
- 3. Deduction via Abduction [2]
- 4. A Framework for Abduction Problems [3]

- K. L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, *Logic and Data Bases, Symposium on Logic and Data Bases, Centre d'études et de recherches de Toulouse, 1977.*, Advances in Data Base Theory, pages 293–322, New York, 1977. Plemum Press. ISBN 0-306-40060-X.
- [2] L. Console, D. T. Dupré, and P. Torasso. On the relationship between abduction and deduction. J. Log. Comput., 1(5): 661-690, 1991. doi: 10.1093/logcom/1.5.661. URL http://dx.doi.org/10.1093/logcom/1.5.661.
- [3] T. Eiter, G. Gottlob, and N. Leone. Abduction from logic programs: Semantics and complexity. *Theor. Comput. Sci.*, 189(1-2):129–177, 1997. doi: 10.1016/S0304-3975(96)00179-X. URL http://dx.doi.org/10.1016/S0304-3975(96)00179-X.
- [4] C. S. Peirce. Illustrations of the Logic of Science VI: Deduction, Induction, and Hypothesis. *The Popular Science Monthly*, 13, 1878.